Non-oscillatory second order linear differential equations
نویسندگان
چکیده
منابع مشابه
Principal Pairs for Oscillatory Second Order Linear Differential Equations
Nonoscillatory second order differential equations always admit “special”, principal solutions. For a certain type of oscillatory equation principal pairs of solutions were introduced by Á. Elbert, F. Neuman and J. Vosmanský, Diff. Int. Equations 5 (1992), 945–960. In this paper, the notion of principal pair is extended to a wider class of oscillatory equations. Also an interesting property of ...
متن کاملNonrectifiable Oscillatory Solutions of Second Order Linear Differential Equations
The second order linear differential equation (p(x)y′)′ + q(x)y = 0 , x ∈ (0, x0] is considered, where p, q ∈ C1(0, x0], p(x) > 0, q(x) > 0 for x ∈ (0, x0]. Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near x = 0 without the Hartman–Wintner condition.
متن کاملOn the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
متن کاملNON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this article we have considered a non-standard finite difference method for the solution of second order Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1963
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1963.100563